Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Invited Evaluate Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).
Cusini, I. et al. Historic views, state of artwork and analysis traits of single photon avalanche diodes and their purposes (Half 1: single pixels). Entrance. Phys. 10, 906675 (2022).
Cusini, I. et al. Historic views, state of artwork and analysis traits of SPAD arrays and their purposes (Half II: SPAD arrays). Entrance. Phys. 10, 906671 (2022).
Hadfield, R. H. et al. Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023).
You, L. Superconducting nanowire single-photon detectors for quantum info. Nanophotonics 9, 2673–2692 (2020).
Esmaeil et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and purposes. Appl. Phys. Lett. 118, 190502 (2021).
Lau, J. A., Verma, V. B., Schwarzer, D. & Wodtke, A. M. Superconducting single-photon detectors within the mid-infrared for bodily chemistry and spectroscopy. Chem. Soc. Rev. 52, 921–941 (2023).
Anwar, A., Perumangatt, C., Steinlechner, F., Jennewein, T. & Ling, A. Entangled photon-pair sources based mostly on three-wave mixing in bulk crystals. Rev. Sci. Instrum. 92, 041101 (2021).
Orieux, A., Versteegh, M. A. M., Jöns, Ok. D. & Ducci, S. Semiconductor units for entangled photon pair technology: a assessment. Rep. Prog. Phys. 80, 076001 (2017).
Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: views and challenges for purposes in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).
Achar, S., Kundu, A., Chilukoti, A. & Sharma, A. Single and entangled photon pair technology utilizing atomic vapors for quantum communication purposes. Entrance. Quantum Sci. Technol. 3, 1438340 (2024).
Ceccarelli, F. et al. Latest advances and future views of single-photon avalanche diodes for quantum photonics purposes. Adv. Quantum Technol. 4, 2000102 (2021).
Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and purposes. Supercond. Sci. Technol. 25, 063001 (2012).
Lubin, G. et al. Quantum correlation measurement with single photon avalanche diode arrays. Decide. Categorical 27, 32863 (2019).
Lubin, G. et al. Heralded spectroscopy reveals exciton–exciton correlations in single colloidal quantum dots. Nano Lett. 21, 6756–6763 (2021).
Szoke, S., He, M., Hickam, B. P. & Cushing, S. Ok. Designing high-power, octave spanning entangled photon sources for quantum spectroscopy. J. Chem. Phys. 154, 244201 (2021).
Sultanov, V. et al. Tunable entangled photon-pair technology in a liquid crystal. Nature 631, 294–299 (2024).
Lubin, G., Oron, D., Rossman, U., Tenne, R. & Yallapragada, V. J. Photon correlations in spectroscopy and microscopy. ACS Photonics 9, 2891–2904 (2022).
Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic gentle scattering: a sensible information and purposes in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).
Lloyd, S. Enhanced sensitivity of photodetection through quantum illumination. Science 321, 1463–1465 (2008).
Facet, A., Dalibard, J. & Roger, G. Experimental take a look at of Bell’s inequalities utilizing time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).
Meystre, P. Theoretical developments in cavity quantum optics: a short assessment. Phys. Rep. 219, 243–262 (1992).
Srivathsan, B. et al. Slim band supply of transform-limited photon pairs through four-wave mixing in a chilly atomic ensemble. Phys. Rev. Lett. 111, 123602 (2013).
David, A. & Miller, B. in Quantum Dynamics of Easy Methods (eds Oppo, G.-L. et al.) 239–266 (CRC Press, 2020); https://doi.org/10.1201/9781003072973-9
Bassett, L. C., Alkauskas, A., Exarhos, A. L. & Fu, Ok.-M. C. Quantum defects by design. Nanophotonics 8, 1867–1888 (2019).
Hohenester, U. Nano and Quantum Optics: An Introduction to Primary Ideas and Concept (Springer, 2019).
Defienne, H. et al. Advances in quantum imaging. Nat. Photon. 18, 1024–1036 (2024).
Kimble, H. J., Dagenais, M. & Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977).
Hollars, C. W., Lane, S. M. & Huser, T. Managed non-classical photon emission from single conjugated polymer molecules. Chem. Phys. Lett. 370, 393–398 (2003).
Kumar, P. et al. Photon antibunching from oriented semiconducting polymer nanostructures. J. Am. Chem. Soc. 126, 3376–3377 (2004).
He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).
Chakraborty, C., Kinnischtzke, L., Goodfellow, Ok. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum gentle from an atomically skinny semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).
Koperski, M. et al. Single photon emitters in exfoliated WSe2 buildings. Nat. Nanotechnol. 10, 503–506 (2015).
Srivastava, A. et al. Optically energetic quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).
Tran, T. T., Bray, Ok., Ford, M. J., Toth, M. & Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
Michler, P. et al. Quantum correlation amongst photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).
Somaschi, N. et al. Close to-optimal single-photon sources within the strong state. Nat. Photon. 10, 340–345 (2016).
Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).
Koley, S. et al. Photon correlations in colloidal quantum dot molecules managed by the neck barrier. Matter 5, 3997–4014 (2022).
Zhu, H. et al. One-dimensional highly-confined CsPbBr3 nanorods with enhanced stability: synthesis and spectroscopy. Nano Lett. 22, 8355–8362 (2022).
Ma, X. et al. Dimension-dependent biexciton quantum yields and service dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 11, 9119–9127 (2017).
Mangum, B. D. et al. Affect of the core dimension on biexciton quantum yield of large CdSe/CdS nanocrystals. Nanoscale 6, 3712–3720 (2014).
Brouri, R., Beveratos, A., Poizat, J.-P. & Grangier, P. Photon antibunching within the fluorescence of particular person colour facilities in diamond. Decide. Lett. 25, 1294 (2000).
Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching within the fluorescence of a single dye molecule trapped in a strong. Phys. Rev. Lett. 69, 1516–1519 (1992).
Tamarat, P. et al. The darkish exciton floor state promotes photon-pair emission in particular person perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).
Fleury, L., Segura, J.-M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).
Dräbenstedt, A. et al. Low-temperature microscopy and spectroscopy on single defect facilities in diamond. Phys. Rev. B 60, 11503–11508 (1999).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Lange, C. M., Daggett, E., Walther, V., Huang, L. & Hood, J. D. Superradiant and subradiant states in lifetime-limited natural molecules by means of laser-induced tuning. Nat. Phys. 20, 836–842 (2024).
Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level techniques: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).
Bonifacio, R. & Lugiato, L. A. Cooperative radiation processes in two-level techniques: superfluorescence. II. Phys. Rev. A 12, 587–598 (1975).
Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Remark of Dicke superradiance in optically pumped HF fuel. Phys. Rev. Lett. 30, 309–312 (1973).
Fidder, H., Knoester, J. & Wiersma, D. A. Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171, 529–536 (1990).
Lim, S.-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene skinny movies and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004).
Meinardi, F., Cerminara, M., Sassella, A., Bonifacio, R. & Tubino, R. Superradiance in molecular H aggregates. Phys. Rev. Lett. 91, 247401 (2003).
Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).
Wang, H. Z., Zheng, X. G., Zhao, F. L., Gao, Z. L. & Yu, Z. X. Superradiance of excessive density frenkel excitons at room temperature. Phys. Rev. Lett. 74, 4079–4082 (1995).
Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting techniques. J. Phys. Chem. B 101, 7241–7248 (1997).
Scheibner, M. et al. Superradiance of quantum dots. Nat. Phys. 3, 106–110 (2007).
Kim, J.-H., Aghaeimeibodi, S., Richardson, C. J. Ok., Leavitt, R. P. & Waks, E. Tremendous-radiant emission from quantum dots in a nanophotonic waveguide. Nano Lett. 18, 4734–4740 (2018).
Grim, J. Q. et al. Scalable in operando pressure tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019).
Zhang, L. et al. New insights into the multiexciton dynamics in phase-pure thick-shell CdSe/CdS quantum dots. J. Phys. Chem. C 122, 25059–25066 (2018).
Zhu, C. et al. Single-photon superradiance in particular person caesium lead halide quantum dots. Nature 626, 535–541 (2024).
Huang, Ok. et al. Room-temperature upconverted superfluorescence. Nat. Photon. 16, 737–742 (2022).
Sipahigil, A. et al. An built-in diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).
Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).
Findik, G. et al. Excessive-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).
Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).
Schedlbauer, J. et al. Monitoring exciton diffusion and exciton annihilation in single nanoparticles of conjugated polymers by photon correlation spectroscopy. Adv. Decide. Mater. 10, 2200092 (2022).
Hofkens, J. et al. Revealing aggressive Förster-type resonance energy-transfer pathways in single bichromophoric molecules. Proc. Natl Acad. Sci. USA 100, 13146–13151 (2003).
Bernard, J., Fleury, L., Talon, H. & Orrit, M. Photon bunching within the fluorescence from single molecules: a probe for intersystem crossing. J. Chem. Phys. 98, 850–859 (1993).
Hedley, G. J. et al. Picosecond time-resolved photon antibunching measures nanoscale exciton movement and the true variety of chromophores. Nat. Commun. 12, 1327 (2021).
Stevens, M. J., Glancy, S., Nam, S. W. & Mirin, R. P. Third-order antibunching from an imperfect single-photon supply. Decide. Categorical 22, 3244 (2014).
Rundquist, A. et al. Nonclassical higher-order photon correlations with a quantum dot strongly coupled to a photonic-crystal nanocavity. Phys. Rev. A 90, 023846 (2014).
Amgar, D., Yang, G., Tenne, R. & Oron, D. Greater-order photon correlation as a instrument to check exciton dynamics in quasi-2D nanoplatelets. Nano Lett. 19, 8741–8748 (2019).
Frenkel, N. et al. Two biexciton sorts coexisting in coupled quantum dot molecules. ACS Nano 17, 14990–15000 (2023).
Lubin, G. et al. Resolving the controversy in biexciton binding vitality of cesium lead halide perovskite nanocrystals by means of heralded single-particle spectroscopy. ACS Nano 15, 19581–19587 (2021).
Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Decide. Categorical 27, 35279 (2019).
Oripov, B. G. et al. A superconducting nanowire single-photon digicam with 400,000 pixels. Nature 622, 730–734 (2023).
Zasedatelev, A. V. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021).
Pei, J., Yang, J., Yildirim, T., Zhang, H. & Lu, Y. Many-body complexes in 2D semiconductors. Adv. Mater. 31, 1706945 (2019).
Gu, B. & Mukamel, S. Photon correlation alerts in coupled-cavity polaritons created by entangled gentle. ACS Photonics 9, 938–943 (2022).
Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Quick, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).
Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. Reaching elevated decision and extra pixels with superresolution optical fluctuation imaging (SOFI). Decide. Categorical 18, 18875 (2010).
Sroda, A. et al. SOFISM: super-resolution optical fluctuation picture scanning microscopy. Optica 7, 1308 (2020).
Zhao, G., Zheng, C., Kuang, C. & Liu, X. Decision-enhanced SOFI through structured illumination. Decide. Lett. 42, 3956 (2017).
Schwartz, O. & Oron, D. Improved decision in fluorescence microscopy utilizing quantum correlations. Phys. Rev. A 85, 033812 (2012).
Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).
Tenne, R. et al. Tremendous-resolution enhancement by quantum picture scanning microscopy. Nat. Photon. 13, 116–122 (2019).
Chen, Y., Tsao, C., Cobb-Bruno, C. & Utzat, H. Stochastic frequency fluctuation super-resolution imaging. Decide. Categorical 33, 6514–6525 (2025).
Meuret, S. et al. Nanoscale relative emission effectivity mapping utilizing cathodoluminescence g(2) imaging. Nano Lett. 18, 2288–2293 (2018).
Tizei, L. H. G. & Kociak, M. Spatially resolved quantum nano-optics of single photons utilizing an electron microscope. Phys. Rev. Lett. 110, 153604 (2013).
Meuret, S. et al. Lifetime measurements effectively under the optical diffraction restrict. ACS Photonics 3, 1157–1163 (2016).
Yanagimoto, S. et al. Time-correlated electron and photon counting microscopy. Commun. Phys. 6, 260 (2023).
Rosławska, A. et al. Atomic-scale dynamics probed by photon correlations. ACS Nano 14, 6366–6375 (2020).
Yanagimoto, S., Yamamoto, N., Yuge, T., Sannomiya, T. & Akiba, Ok. Unveiling the character of cathodoluminescence from photon statistics. Commun. Phys. 8, 56 (2025).
Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
Kazakevich, E., Aharon, H. & Kfir, O. Spatial electron-photon entanglement. Phys. Rev. Res. 6, 043033 (2024).
Harper, N., Hickam, B. P., He, M. & Cushing, S. Ok. Entangled photon correlations permit a continuous-wave laser diode to measure single-photon, time-resolved fluorescence. J. Phys. Chem. Lett. 14, 5805–5811 (2023).
Eshun, A. et al. Fluorescence lifetime measurements utilizing photon pair correlations generated through spontaneous parametric down conversion (SPDC). Decide. Categorical 31, 26935 (2023).
Li, Q. et al. Single-photon absorption and emission from a pure photosynthetic complicated. Nature 619, 300–304 (2023).
Eshun, A., Varnavski, O., Villabona-Monsalve, J. P., Burdick, R. Ok. & Goodson, T. I. Entangled photon spectroscopy. Acc. Chem. Res. 55, 991–1003 (2022).
Hickam, B. P., He, M., Harper, N., Szoke, S. & Cushing, S. Ok. Single-photon scattering can account for the discrepancies amongst entangled two-photon measurement methods. J. Phys. Chem. Lett. 13, 4934–4940 (2022).
Varnavski, O. & Goodson, T. I. Two-photon fluorescence microscopy at extraordinarily low excitation depth: the facility of quantum correlations. J. Am. Chem. Soc. 142, 12966–12975 (2020).
Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett. 68, 2421–2424 (1992).
Ou, Z.-Y. J. Multi-Photon Quantum Interference (Springer, 2007); https://doi.org/10.1007/978-0-387-25554-5
Ryu, J., Cho, Ok., Oh, C.-H. & Kang, H. All-order dispersion cancellation and energy-time entangled state. Decide. Categorical 25, 1360 (2017).
Okano, M. et al. Dispersion cancellation in high-resolution two-photon interference. Phys. Rev. A 88, 043845 (2013).
Lyons, A. et al. Attosecond-resolution Hong–Ou–Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).
Ndagano, B. et al. Quantum microscopy based mostly on Hong–Ou–Mandel interference. Nat. Photon. 16, 384–389 (2022).
Dorfman, Ok. E., Asban, S., Gu, B. & Mukamel, S. Hong–Ou–Mandel interferometry and spectroscopy utilizing entangled photons. Commun. Phys. 4, 49 (2021).
Kalashnikov, D. A. et al. Quantum interference within the presence of a resonant medium. Sci. Rep. 7, 11444 (2017).
Eshun, A. et al. Investigations of molecular optical properties utilizing quantum gentle and Hong–Ou–Mandel interferometry. J. Am. Chem. Soc. 143, 9070–9081 (2021).
Gregory, T., Moreau, P.-A., Toninelli, E. & Padgett, M. J. Imaging by means of noise with quantum illumination. Sci. Adv. 6, eaay2652 (2020).
Defienne, H., Reichert, M., Fleischer, J. W. & Faccio, D. Quantum picture distillation. Sci. Adv. 5, eaax0307 (2019).
Morris, P. A., Aspden, R. S., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small variety of photons. Nat. Commun. 6, 5913 (2015).
Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).
Aspden, R. S. et al. Photon-sparse microscopy: seen gentle imaging utilizing infrared illumination. Optica 2, 1049 (2015).
Padgett, M. J. & Boyd, R. W. An introduction to ghost imaging: quantum and classical. Philos. Trans. R. Soc. A 375, 20160233 (2017).
Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-photon” coincidence imaging with a classical supply. Phys. Rev. Lett. 89, 113601 (2002).
Gatti, A., Brambilla, E., Bache, M. & Lugiato, L. A. Correlated imaging, quantum and classical. Phys. Rev. A 70, 013802 (2004).
Karmakar, S. & Shih, Y. Two-color ghost imaging with enhanced angular resolving energy. Phys. Rev. A 81, 033845 (2010).
Valencia, A., Scarcelli, G., D’Angelo, M. & Shih, Y. Two-photon imaging with thermal gentle. Phys. Rev. Lett. 94, 063601 (2005).
Lopaeva, E. D. et al. Experimental realization of quantum illumination. Phys. Rev. Lett. 110, 153603 (2013).
Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).
Kviatkovsky, I., Chrzanowski, H. M., Avery, E. G., Bartolomaeus, H. & Ramelow, S. Microscopy with undetected photons within the mid-infrared. Sci. Adv. 6, eabd0264 (2020).
Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).
Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, Ok. & Takeuchi, S. Beating the usual quantum restrict with four-entangled photons. Science 316, 726–729 (2007).
Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).
Ono, T., Okamoto, R. & Takeuchi, S. An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013).
Israel, Y., Rosen, S. & Silberberg, Y. Supersensitive polarization microscopy utilizing NOON states of sunshine. Phys. Rev. Lett. 112, 103604 (2014).
Boto, A. N. et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction restrict. Phys. Rev. Lett. 85, 2733–2736 (2000).
Kok, P. et al. Quantum-interferometric optical lithography: in direction of arbitrary two-dimensional patterns. Phys. Rev. A 63, 063407 (2001).
Barreiro, J. T., Langford, N. Ok., Peters, N. A. & Kwiat, P. G. Era of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).
Kwiat, P. G. Hyper-entangled states. J. Mod. Decide. 44, 2173–2184 (1997).
Zhang, Y. et al. Quantum imaging of organic organisms by means of spatial and polarization entanglement. Sci. Adv. 10, eadk1495 (2024).
Camphausen, R. et al. A quantum-enhanced wide-field part imager. Sci. Adv. 7, eabj2155 (2021).
Defienne, H., Ndagano, B., Lyons, A. & Faccio, D. Polarization entanglement-enabled quantum holography. Nat. Phys. 17, 591–597 (2021).
Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave detector through the use of squeezed states of sunshine. Nat. Photon. 7, 613–619 (2013).
Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).
Chu, X.-L., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed gentle. Nat. Photon. 11, 58–62 (2017).
Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).
Loredo, J. C. et al. Scalable efficiency in solid-state single-photon sources. Optica 3, 433–440 (2016).
Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995); https://doi.org/10.1017/CBO9781139644105
Steinhauer, S., Gyger, S. & Zwiller, V. Progress on large-scale superconducting nanowire single-photon detectors. Appl. Phys. Lett. 118, 100501 (2021).
Mueller, A. S. et al. Free-space coupled superconducting nanowire single-photon detector with low darkish counts. Optica 8, 1586–1587 (2021).
Harper, N. A. et al. Extremely environment friendly seen and near-IR photon pair technology with thin-film lithium niobate. Decide. Quantum 2, 103–109 (2024).
Cortes, C. L., Adhikari, S., Ma, X. & Grey, S. Ok. Accelerating quantum optics experiments with statistical studying. Appl. Phys. Lett. 116, 184003 (2020).
Kudyshev, Z. A. et al. Machine studying assisted quantum super-resolution microscopy. Nat. Commun. 14, 4828 (2023).
Proppe, A. H. et al. Time-resolved line shapes of single quantum emitters through machine discovered photon correlations. Phys. Rev. Lett. 131, 053603 (2023).
Lavoie, J. et al. Part-modulated interferometry, spectroscopy, and refractometry utilizing entangled photon pairs. Adv. Quantum Technol. 3, 1900114 (2020).
Yin, L. et al. Evaluation of the spatial properties of correlated photon in collinear phase-matching. Photonics 8, 12 (2021).
Sansa Perna, A., Ortega, E., Gräfe, M. & Steinlechner, F. Seen-wavelength polarization-entangled photon supply for quantum communication and imaging. Appl. Phys. Lett. 120, 074001 (2022).
Lu, X. et al. Chip-integrated seen–telecom entangled photon pair supply for quantum communication. Nat. Phys. 15, 373–381 (2019).
Wang, H. et al. On-demand semiconductor supply of entangled photons which concurrently has excessive constancy, effectivity, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).
Huber, D., Reindl, M., Aberl, J., Rastelli, A. & Trotta, R. Semiconductor quantum dots as a really perfect supply of polarization-entangled photon pairs on-demand: a assessment. J. Decide. 20, 073002 (2018).
Kim, H., Park, H. S. & Choi, S.-Ok. Three-photon N00N states generated by photon subtraction from double photon pairs. Decide. Categorical 17, 19720 (2009).
Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Tremendous-resolving part measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).
Solar, F. W., Ou, Z. Y. & Guo, G. C. Projection measurement of the maximally entangled N-photon state for an indication of the N-photon de Broglie wavelength. Phys. Rev. A 73, 023808 (2006).
Solar, F. W., Liu, B. H., Huang, Y. F., Ou, Z. Y. & Guo, G. C. Remark of the four-photon de Broglie wavelength by state-projection measurement. Phys. Rev. A 74, 033812 (2006).
Liu, B. H. et al. Demonstration of the three-photon de Broglie wavelength by projection measurement. Phys. Rev. A 77, 023815 (2008).
Resch, Ok. J. et al. Time-reversal and super-resolving part measurements. Phys. Rev. Lett. 98, 223601 (2007).
Afek, I., Ambar, O. & Silberberg, Y. Excessive-NOON states by mixing quantum and classical gentle. Science 328, 879–881 (2010).
Fuenzalida, J. et al. Decision of quantum imaging with undetected photons. Quantum 6, 646 (2022).
Viswanathan, B., Barreto Lemos, G. & Lahiri, M. Decision restrict in quantum imaging with undetected photons utilizing place correlations. Decide. Categorical 29, 38185 (2021).
Dorfman, Ok. E., Schlawin, F. & Mukamel, S. Nonlinear optical alerts and spectroscopy with quantum gentle. Rev. Mod. Phys. 88, 045008 (2016).
Ko, L., Cook dinner, R. L. & Whaley, Ok. B. Dynamics of photosynthetic gentle harvesting techniques interacting with N-photon Fock states. J. Chem. Phys. 156, 244108 (2022).
Roslyak, O., Marx, C. A. & Mukamel, S. Nonlinear spectroscopy with entangled photons: manipulating quantum pathways of matter. Phys. Rev. A 79, 033832 (2009).
Rodriguez-Camargo, C. D., Gestsson, H. O., Nation, C., Jones, A. R. & Olaya-Castro, A. Perturbation-theory method for predicting vibronic selectivity by entangled-photon-pair absorption. Phys. Rev. A 111, 063101 (2025).
Loudon, R. The Quantum Concept of Mild (Oxford Univ. Press, 2000).
Fox, M. Quantum Optics: An Introduction (Oxford Univ. Press, 2006).
Feynman, R. P. & Hibbs, A. R. Quantum Mechanics and Path Integrals: Emended Version (Dover Publications, 2010).
Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 3 (Addison Wesley, 1971).
Hong, C. Ok., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
Berchera, I. R. & Degiovanni, I. P. Quantum imaging with sub-Poissonian gentle: challenges and views in optical metrology. Metrologia 56, 024001 (2019).
Hadfield, R. H. Single-photon detectors for optical quantum info purposes. Nat. Photon. 3, 696–705 (2009).
McCaughan, A. N. Readout architectures for superconducting nanowire single photon detectors. Supercond. Sci. Technol. 31, 040501 (2018).
McCaughan, A. N. et al. The thermally-coupled imager: a scalable readout structure for superconducting nanowire single photon detectors. Appl. Phys. Lett. 121, 102602 (2022).