Kovač, A., Paranos, M. & Marciuš, D. Hydrogen in vitality transition: a evaluate. Int. J. Hydrog. Vitality 46, 10016–10035 (2021).
Johnson, N. et al. Sensible roles for hydrogen sooner or later vitality transition. Nat. Rev. Clear. Technol. 1, 351–371 (2025).
Horri, B. A. & Ozcan, H. Inexperienced hydrogen manufacturing by water electrolysis: present standing and challenges. Curr. Opin. Inexperienced Maintain. Chem. 47, 100932 (2024).
Tüysüz, H. Alkaline water electrolysis for inexperienced hydrogen manufacturing. Acc. Chem. Res. 57, 558–567 (2024).
Liu, R.-T. et al. Latest advances in proton alternate membrane water electrolysis. Chem. Soc. Rev. 52, 5652–5683 (2023).
IRENA Inexperienced Hydrogen Value Discount: Scaling up Electrolysers to Meet the 1.5 °C Local weather Purpose (IRENA, 2020).
Chen, Y. et al. Key parts and design technique for a proton alternate membrane water electrolyzer. Small Struct. 4, 2200130 (2023).
Wang, C. & Feng, L. Latest advances and views of Ir-based anode catalysts in PEM water electrolysis. Vitality Adv. 3, 14–29 (2024).
Minke, C., Suermann, M., Bensmann, B. & Hanke-Rauschenbach, R. Is iridium demand a possible bottleneck within the realization of large-scale PEM water electrolysis?. Int. J. Hydrog. Vitality 46, 23581–23590 (2021).
Clapp, M., Zalitis, C. M. & Ryan, M. Views on present and future iridium demand and iridium oxide catalysts for PEM water electrolysis. Catal. Right this moment 420, 114140 (2023).
Riedmayer, R., Paren, B. A., Schofield, L., Shao-Horn, Y. & Mallapragada, D. Proton alternate membrane electrolysis efficiency targets for reaching 2050 enlargement objectives constrained by iridium provide. Vitality Fuels 37, 8614–8623 (2023).
Wang, Q. et al. Lengthy-term stability challenges and alternatives in acidic oxygen evolution electrocatalysis. Angew. Chem. 135, e202216645 (2023).
Hou, L. et al. Methods for the design of ruthenium-based electrocatalysts towards acidic oxygen evolution response. EES Catal. 1, 619–644 (2023).
Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for sturdy acidic oxygen evolution response in proton alternate membrane water electrolysis. Nat. Mater. 22, 100–108 (2023.
Hrbek, T., Kúš, P., Kosto, Y., Rodríguez, M. G. & Matolínová, I. Magnetron-sputtered thin-film catalyst with low-Ir-Ru content material for water electrolysis: long-term stability and degradation evaluation. J. Energy Sources 556, 232375 (2023).
Cheng, J., Zhang, H., Chen, G. & Zhang, Y. Examine of IrxRu1−xO2 oxides as anodic electrocatalysts for strong polymer electrolyte water electrolysis. Electrochim. Acta 54, 6250–6256 (2009).
Huynh, T. B. N. et al. Ir–Ru electrocatalysts embedded in N-doped carbon matrix for proton alternate membrane water electrolysis. Adv. Funct. Mater. 33, 2301999 (2023).
Wen, Y. et al. Stabilizing extremely lively Ru websites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 143, 6482–6490 (2021).
Joo, J. et al. Mn-dopant differentiating the Ru and Ir oxidation states in catalytic oxides towards sturdy oxygen evolution response in acidic electrolyte. Small Strategies 6, 2101236 (2022).
Zhu, W. et al. Secure and oxidative charged Ru improve the acidic oxygen evolution response exercise in two-dimensional ruthenium–iridium oxide. Nat. Commun. 14, 5365 (2023).
Pantò, F., Siracusano, S., Briguglio, N. & Aricò, A. S. Sturdiness of a recombination catalyst-based membrane-electrode meeting for electrolysis operation at excessive present density. Appl. Vitality 279, 115809 (2020).
Siracusano, S. et al. New insights into the steadiness of a excessive efficiency nanostructured catalyst for sustainable water electrolysis. Nano Vitality 40, 618–632 (2017).
Tao, L. et al. Mass-efficient catalyst layer of hierarchical sub-nanosheets on nanowire for sensible proton alternate membrane electrolyzer. Joule 8, 450–460 (2024).
Chen, F.-Y., Wu, Z.-Y., Adler, Z. & Wang, H. Stability challenges of electrocatalytic oxygen evolution response: From mechanistic understanding to reactor design. Joule 5, 1704–1731 (2021).
Escudero-Escribano, M. et al. Significance of floor IrOx in stabilizing RuO2 for oxygen evolution. J. Phys. Chem. B 122, 947–955 (2018).
Kasian, O. et al. On the origin of the improved ruthenium stability in RuO2–IrO2 blended oxides. J. Electrochem. Soc. 163, F3099–F3104 (2016).
Escalera-López, D. et al. Part- and floor composition-dependent electrochemical stability of ir-ru nanoparticles throughout oxygen evolution response. ACS Catal. 11, 9300–9316 (2021).
Zagalskaya, A. & Alexandrov, V. Function of defects within the interaction between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution response in RuO2 and IrO2. ACS Catal. 10, 3650–3657 (2020).
Klyukin, Ok., Zagalskaya, A. & Alexandrov, V. Function of dissolution intermediates in selling oxygen evolution response at RuO2(110) floor. J. Phys. Chem. C 123, 22151–22157 (2019).
Cherevko, S. et al. Dissolution of noble metals throughout oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).
She, L. et al. On the sturdiness of iridium-based electrocatalysts towards the oxygen evolution response below acid surroundings. Adv. Funct. Mater. 32, 2108465 (2022).
Park, W. & Chung, D. Y. Exercise–stability relationships in oxygen evolution response. ACS Mater. Au 5, 1–10 (2025).
Kumar, S. S. & Lim, H. Latest advances in hydrogen manufacturing by means of proton alternate membrane water electrolysis—a evaluate. Maintain. Vitality Fuels 7, 3560–3583 (2023).
Kuhnert, E., Hacker, V. & Bodner, M. A evaluate of accelerated stress assessments for enhancing MEA sturdiness in PEM water electrolysis cells. Int. J. Vitality Res. 2023, 1–23 (2023).
Jin, H. et al. Dynamic rhenium dopant boosts ruthenium oxide for sturdy oxygen evolution. Nat. Commun. 14, 354 (2023).
Solar, H. & Jung, W. Latest advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution response. J. Mater. Chem. A 9, 15506–15521 (2021).
Technical targets for proton alternate membrane electrolysis. US Division of Vitality (2022).
Kong, S. et al. Acid-stable manganese oxides for proton alternate membrane water electrolysis. Nat. Catal. 7, 252–261 (2024).
Ram, R. et al. Water-hydroxide trapping in cobalt tungstate for proton alternate membrane water electrolysis. Science 384, 1373–1380 (2024).
Chong, L. et al. La- and Mn-doped cobalt spinel oxygen evolution catalyst for proton alternate membrane electrolysis. Science 380, 609–616 (2023).
Pan, S. et al. Environment friendly and secure noble-metal-free catalyst for acidic water oxidation. Nat. Commun. 13, 2294 (2022).
Jo, S. et al. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for environment friendly and secure acidic oxygen evolution response in proton alternate membrane water electrolysis. Adv. Vitality Mater. 13, 2301420 (2023).
Li, A. et al. Atomically dispersed hexavalent iridium oxide from MnO2 discount for oxygen evolution catalysis. Science 384, 666–670 (2024).
Flores, R. A. et al. Lively studying accelerated discovery of secure iridium oxide polymorphs for the oxygen evolution response. Chem. Mater. 32, 5854–5863 (2020).
Nong, H. N. et al. A singular oxygen ligand surroundings facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 1, 841–851 (2018).
Lee, W. H. et al. Excessive crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and gasoline cells. Nat. Commun. 12, 4271 (2021).
Shi, Z. et al. Confined Ir single websites with triggered lattice oxygen redox: towards boosted and sustained water oxidation catalysis. Joule 5, 2164–2176 (2021).
Zheng, X. et al. Ir-Sn pair-site triggers key oxygen radical intermediate for environment friendly acidic water oxidation. Sci. Adv. 9, eadi8025 (2023).
Wang, M. & Feng, Z. Pitfalls in X-ray absorption spectroscopy evaluation and interpretation: a sensible information for common customers. Curr. Opin. Electrochem. 30, 100803 (2021).
Laha, S. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Vitality Mater. 9, 1803795 (2019).
Liu, H. et al. Eliminating over-oxidation of ruthenium oxides by niobium for extremely secure electrocatalytic oxygen evolution in acidic media. Joule 7, 558–573 (2023).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density practical dispersion correction (DFT-D) for the 94 components H–Pu. J. Chem. Phys. 132, 154104 (2010).
Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by quick computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
Leshchev, D. et al. The Interior Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for supplies analysis. J. Synchrotron Radiat. 29, 1095–1106 (2022).
Lin, Y. et al. Chromium–ruthenium oxide strong resolution electrocatalyst for extremely environment friendly oxygen evolution response in acidic media. Nat. Commun. 10, 162 (2019).