Mittag, T. & Pappu, R. V. A conceptual framework for understanding section separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).
Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Section transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).
Lyon, A. S., Peeples, W. B. & Rosen, M. Okay. A framework for understanding the capabilities of biomolecular condensates throughout scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).
Alberti, S. & Hyman, A. A. Biomolecular condensates on the nexus of mobile stress, protein aggregation illness and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).
Roden, C. & Gladfelter, A. S. RNA contributions to the shape and performance of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).
Ditlev, J. A., Case, L. B. & Rosen, M. Okay. Who’s in and who’s out—compositional management of biomolecular condensates. J. Mol. Biol. 430, 4666–4684 (2018).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. Okay. Biomolecular condensates: organizers of mobile biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Peeples, W. & Rosen, M. Okay. Mechanistic dissection of elevated enzymatic fee in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).
Collins, M. J., Tomares, D. T., Nandana, V., Schrader, J. M. & Childers, W. S. RNase E biomolecular condensates stimulate PNPase exercise. Sci. Rep. 13, 12937 (2023).
Portz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in well being and illness. Developments Biochem. Sci. 46, 550–563 (2021).
Zuo, L. et al. Loci-specific section separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun. 12, 1491 (2021).
Levone, B. R. et al. FUS-dependent liquid-liquid section separation is necessary for DNA restore initiation. J. Cell Biol. 220, e202008030 (2021).
Patel, A. et al. A liquid-to-solid section transition of the ALS protein FUS accelerated by illness mutation. Cell 162, 1066–1077 (2015).
Wang, W. Y. et al. Interplay of FUS and HDAC1 regulates DNA harm response and restore in neurons. Nat. Neurosci. 16, 1383–1391 (2013).
Ishiguro, A., Katayama, A. & Ishihama, A. Totally different recognition modes of G-quadruplex RNA between two ALS/FTLD-linked proteins TDP-43 and FUS. FEBS Lett. 595, 310–323 (2021).
Ishiguro, A., Lu, J., Ozawa, D., Nagai, Y. & Ishihama, A. ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid section separation and liquid-to-solid transition. J. Biol. Chem. 297, 101284 (2021).
Kaur, T. et al. Molecular crowding tunes materials states of ribonucleoprotein condensates. Biomolecules 9, 71 (2019).
Sumrall, E. R., Gao, G., Stakenas, S. & Walter, N. G. Floor-tethering enhances precision in measuring diffusion inside 3D protein condensates. J. Mol. Biol. (2025).
Wu, T. et al. Single-fluorogen imaging reveals distinct environmental and structural options of biomolecular condensates. Nat. Phys. 21, 778–786 (2025).
Burnecki, Okay., Kepten, E., Garini, Y., Sikora, G. & Weron, A. Estimating the anomalous diffusion exponent for single particle monitoring knowledge with measurement errors—another method. Sci. Rep. 5, 11306 (2015).
Heckert, A., Dahal, L., Tjian, R. & Darzacq, X. Recovering mixtures of fast-diffusing states from brief single-particle trajectories. Elife 11, e70169 (2022).
Gopal, A., Zhou, Z. H., Knobler, C. M. & Gelbart, W. M. Visualizing giant RNA molecules in resolution. RNA 18, 284–299 (2012).
Shen, Z. et al. Organic condensates kind percolated networks with molecular movement properties distinctly completely different from dilute options. Elife 12, e81907 (2023).
Kamagata, Okay., Kusano, R., Kanbayashi, S., Banerjee, T. & Takahashi, H. Single-molecule characterization of goal search dynamics of DNA-binding proteins in DNA-condensed droplets. Nucleic Acids Res. 51, 6654–6667 (2023).
Kamagata, Okay. et al. Construction-dependent recruitment and diffusion of visitor proteins in liquid droplets of FUS. Sci. Rep. 12, 7101 (2022).
Kamagata, Okay. et al. Molecular ideas of recruitment and dynamics of visitor proteins in liquid droplets. Sci. Rep. 11, 19323 (2021).
Todorov, T. I., de Carmejane, O., Walter, N. G. & Morris, M. D. Capillary electrophoresis of RNA in dilute and semidilute polymer options. Electrophoresis 22, 2442–2447 (2001).
Holehouse, A. S., Das, R. Okay., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: sources to investigate sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
Manzo, C. & Garcia-Parajo, M. F. A overview of progress in single particle monitoring: from strategies to biophysical insights. Rep. Prog. Phys. 78, 124601 (2015).
Lai, W.-J. C. et al. mRNAs and lncRNAs intrinsically kind secondary buildings with brief end-to-end distances. Nat. Commun. 9, 4328 (2018).
Emmanouilidis, L. et al. A strong beta-sheet construction is fashioned on the floor of FUS droplets throughout ageing. Nat. Chem. Biol. 20, 1044–1052 (2024).
He, C., Wu, C. Y., Li, W. & Xu, Okay. Multidimensional super-resolution microscopy unveils nanoscale floor aggregates within the ageing of FUS condensates. J. Am. Chem. Soc. 145, 24240–24248 (2023).
Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate floor. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).
Ausserwöger, H. et al. Biomolecular condensates maintain pH gradients at equilibrium by means of cost neutralisation. Preprint at bioRxiv (2024).
Hoffmann, C. et al. Electrical potential on the interface of membraneless organelles gauged by graphene. Nano Lett. 23, 10796–10801 (2023).
Linsenmeier, M. et al. The interface of condensates of the hnRNPA1 low-complexity area promotes formation of amyloid fibrils. Nat. Chem. 15, 1340–1349 (2023).
Deng, H., Gao, Okay. & Jankovic, J. The function of FUS gene variants in neurodegenerative ailments. Nat. Rev. Neurol. 10, 337–348 (2014).
Cruz, M. P. Edaravone (Radicava): a novel neuroprotective agent for the remedy of amyotrophic lateral sclerosis. P. T. 43, 25–28 (2018).
Albo, F., Pieri, M. & Zona, C. Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J. Neurosci. Res. 78, 200–207 (2004).
Ambadi Thody, S. et al. Small-molecule properties outline partitioning into biomolecular condensates. Nat. Chem. 16, 1794–1802 (2024).
Tischbein, M. et al. The RNA-binding protein FUS/TLS undergoes calcium-mediated nuclear egress throughout excitotoxic stress and is required for GRIA2 mRNA processing. J. Biol. Chem. 294, 10194–10210 (2019).
Cataldi, R. et al. A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Commun. Biol. 4, 19 (2021).
Chen, S. W. et al. Construction–toxicity relationship in intermediate fibrils from α-synuclein condensates. J. Am. Chem. Soc. 146, 10537–10549 (2024).
Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Evaluation of membrane and floor protein sequences with the hydrophobic second plot. J. Mol. Biol. 179, 125–142 (1984).
Gao, G. & Walter, N. G. Essential evaluation of condensate boundaries in dual-color single particle monitoring. J. Phys. Chem. B 127, 7694–7707 (2023).
Galvanetto, N. et al. Excessive dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).
Custer, T. C. & Walter, N. G. In vitro labeling methods for in cellulo fluorescence microscopy of single ribonucleoprotein machines. Protein Sci. 26, 1363–1379 (2017).
Schmidt, A., Gao, G., Little, S. R., Jalihal, A. P. & Walter, N. G. Following the messenger: current improvements in dwell cell single molecule fluorescence imaging. Wiley Interdiscip. Rev. RNA 11, e1587 (2020).
Brito Querido, J. et al. Construction of a human 48S translational initiation complicated. Science 369, 1220–1227 (2020).
Lin, Y., Protter, D. S. W., Rosen, M. Okay. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).
Yin, J. & Chen, X. Edaravone prevents excessive glucose-induced harm in retinal Müller cells by means of thioredoxin1 and the PGC-1α/NRF1/TFAM pathway. Pharm. Biol. 59, 1231–1242 (2021).
Sala, G. et al. Riluzole selective antioxidant results in cell fashions expressing amyotrophic lateral sclerosis endophenotypes. Clin. Psychopharmacol. Neurosci. 17, 438–442 (2019).
Johnson-Buck, A. et al. Kinetic fingerprinting to establish and depend single nucleic acids. Nat. Biotechnol. 33, 730–732 (2015).
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, Okay. Extremely inclined skinny illumination permits clear single-molecule imaging in cells. Nat. Strategies 5, 159–161 (2008).
Evangelidis, G. D. & Psarakis, E. Z. Parametric picture alignment utilizing enhanced correlation coefficient maximization. IEEE Trans. Sample Anal. Mach. Intell. 30, 1858–1865 (2008).
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle monitoring. Strategies 115, 80–90 (2017).
Michalet, X. & Berglund, A. J. Optimum diffusion coefficient estimation in single-particle monitoring. Phys. Rev. E 85, 061916 (2012).
Berglund, A. J. Statistics of camera-based single-particle monitoring. Phys. Rev. E 82, 011917 (2010).
Warren, S. C. et al. Speedy international becoming of enormous fluorescence lifetime imaging microscopy datasets. PLoS ONE 8, e70687 (2013).
Enderlein, J. & Erdmann, R. Quick becoming of multi-exponential decay curves. Choose. Commun. 134, 371–378 (1997).
Kohler, J., Hur, Okay. H. & Mueller, J. D. Autocorrelation perform of finite-length knowledge in fluorescence correlation spectroscopy. Biophys. J. 122, 241–253 (2023).

