Emin, D. Polarons (Cambridge Univ. Press, 2012).
Holstein, T. Research of polaron movement: Half I. The molecular-crystal mannequin. Ann. Phys. 8, 325–342 (1959).
Holstein, T. Research of polaron movement: half II. The “small” polaron. Ann. Phys. 8, 343–389 (1959).
Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).
Heeger, A. J. Semiconducting polymers: the third era. Chem. Soc. Rev. 39, 2354–2371 (2010).
Brédas, J. L. & Avenue, G. B. Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18, 309–315 (1985).
The Physics of Natural Superconductors and Conductors (Springer, 2008).
Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in supplies. Nat. Rev. Mater. 6, 560–586 (2021).
Buizza, L. R. V. & Herz, L. M. Polarons and cost localization in metal-halide semiconductors for photovoltaic and light-emitting gadgets. Adv. Mater. 33, 2007057 (2021).
Guo, X. & Facchetti, A. The journey of conducting polymers from discovery to software. Nat. Mater. 19, 922–928 (2020).
Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Cost transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).
Liu, Y., Gao, S., Zhang, X., Xin, J. H. & Zhang, C. Probing the character of cost carriers in one-dimensional conjugated polymers: a assessment of the theoretical fashions, experimental traits, and thermoelectric purposes. J. Mater. Chem. C. 11, 12–47 (2023).
Salje, E. Ok. H. et al. (eds) Polarons and Bipolarons in Excessive-Tc Superconductors and Associated Supplies (Cambridge Univ. Press, 1995).
Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171 (1997).
Koepsell, J. et al. Microscopic evolution of doped Mott insulators from polaronic steel to Fermi liquid. Science 374, 82–86 (2021).
Koschorreck, M. et al. Engaging and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).
Alexandrov, A. S. Polarons in Superior Supplies (Springer, 2007).
Alexandrov, A. S. & Devreese, J. T. Advances in Polaron Physics (Springer, 2010).
Tang, H. et al. An answer-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).
Mertelj, T., Kabanov, V. V. & Mihailovic, D. Charged particles on a two-dimensional lattice topic to anisotropic Jahn–Teller interactions. Phys. Rev. Lett. 94, 147003 (2005).
Perfetti, L. et al. Spectroscopic indications of polaronic carriers within the quasi-one-dimensional conductor (TaSe4)2I. Phys. Rev. Lett. 87, 216404 (2001).
Sobota, J. A., He, Y. & Shen, Z.-X. Angle-resolved photoemission research of quantum supplies. Rev. Mod. Phys. 93, 025006 (2021).
Kruchinin, S. Multiband superconductors. Rev. Theor. Sci. 4, 165–178 (2016).
Mahan, G. D. Many-Particle Physics (Springer, 2013).
Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Polarons from first rules, with out supercells. Phys. Rev. Lett. 122, 246403 (2019).
Sio, W. H., Verdi, C., Poncé, S. & Giustino, F. Ab initio idea of polarons: formalism and purposes. Phys. Rev. B 99, 235139 (2019).
Sio, W. H. & Giustino, F. Polarons in two-dimensional atomic crystals. Nat. Phys. 19, 629–636 (2023).
Bhat, V., Callaway, C. P. & Risko, C. Computational approaches for natural semiconductors: from chemical and bodily understanding to predicting new supplies. Chem. Rev. 123, 7498–7547 (2023).
Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604 (2017).
Reticcioli, M. et al. Polaron-driven floor reconstructions. Phys. Rev. X 7, 031053 (2017).
Guzelturk, B. et al. Visualization of dynamic polaronic pressure fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).
Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).
Bozin, E. S. et al. Crystallization of polarons by way of cost and spin ordering transitions in 1T-TaS2. Nat. Commun. 14, 7055 (2023).
Bombile, J. H., Janik, M. J. & Milner, S. T. Polaron formation mechanisms in conjugated polymers. Phys. Chem. Chem. Phys. 20, 317–331 (2018).
Xu, J. et al. Figuring out structural and chemical heterogeneities of floor species on the single-bond restrict. Science 371, 818–822 (2021).
Zhu, X. et al. Revealing intramolecular isotope results with chemical-bond precision. J. Am. Chem. Soc. 145, 13839–13845 (2023).
Cirera, B. et al. Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nat. Nanotechnol. 15, 437–443 (2020).
González-Herrero, H. et al. Atomic scale management and visualization of topological quantum part transition in π-conjugated polymers pushed by their size. Adv. Mater. 33, e2104495 (2021).
Datar, A., Bar-Sadan, M. & Ramasubramaniam, A. Interactions between transition-metal surfaces and MoS2 monolayers: implications for hydrogen evolution and CO2 discount reactions. J. Phys. Chem. C. 124, 20116–20124 (2020).
Kivelson, S. & Heeger, A. J. First-order transition to a metallic state in polyacetylene: a strong-coupling polaronic steel. Phys. Rev. Lett. 55, 308–311 (1985).
Stafström, S. et al. Polaron lattice in extremely conducting polyaniline: theoretical and optical research. Phys. Rev. Lett. 59, 1464–1467 (1987).
Pásztor, Á. et al. Multiband cost density wave uncovered in a transition steel dichalcogenide. Nat. Commun. 12, 6037 (2021).
Barja, S. et al. Cost density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).
Emin, D. Small polarons. Phys. Right this moment 35, 34–40 (1982).
Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).
Zhang, C. et al. Chemical identification and bond management of π-skeletons in a coupling response. J. Am. Chem. Soc. 143, 9461–9467 (2021).
Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Strategies 15, 194–200 (2018).
Köppel, H., Yarkony, D. R. & Barentzen, H. The Jahn-Teller impact: Fundamentals and implications for physics and chemistry (Springer, 2009).
Pouget, J. P. et al. X ray statement of twookF and 4okF scatterings in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 37, 437–440 (1976).
Schäfer, J. et al. Uncommon spectral conduct of charge-density waves with imperfect nesting in a quasi-one-dimensional steel. Phys. Rev. Lett. 91, 066401 (2003).
Giessibl, F. J. The qPlus sensor, a robust core for the atomic drive microscope. Rev. Sci. Instrum. 90, 011101 (2019).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Yakovkin, I. N. Quantum confinement in free Cu(111), Ag(111), and Au(111) layers and obvious splitting of floor bands. Surf. Sci. 691, 121501 (2020).
Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).
Tersoff, J. & Hamann, D. R. Idea and software for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized suggestions. Phys. Rev. B 90, 085421 (2014).
Peng, J. et al. Weakly perturbative imaging of interfacial water with submolecular decision by atomic drive microscopy. Nat. Commun. 9, 122 (2018).
Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical therapy of single-molecule scanning Raman picoscopy in strongly inhomogeneous close to fields. J. Raman Spectrosc. 52, 296–309 (2021).
Hu, W. et al. Figuring out the construction of 4-chlorophenyl isocyanide adsorbed on Au(111) and Pt(111) surfaces by first-principles simulations of Raman spectra. Phys. Chem. Chem. Phys. 19, 32389–32397 (2017).
Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at excessive pressures. Phys. Rev. B 78, 134106 (2008).
Meena, R., Li, G. & Casula, M. Floor-state properties of the narrowest zigzag graphene nanoribbon from quantum Monte Carlo and comparability with density useful idea. J. Chem. Phys. 156, 084112 (2022).
Tesch, R. & Kowalski, P. M. Hubbard U parameters for transition metals from first rules. Phys. Rev. B 105, 195153 (2022).
Wu, Y. et al. Polaron superlattices in n-doped single conjugated polymers. Zenodo (2025).